Comparing the Efficacy of SMART Bag-Valve Ventilation to Traditional Adult and Pediatric Bag-Valve Ventilation During Simulated Out-Of-Hospital Cardiopulmonary Resuscitation
Main Article Content
Abstract
Aim: Optimal Bag Valve Mask (BVM) ventilation is crucial during the management of cardiac arrest because it provides essential oxygen to patients, improving chances of survival until advanced care becomes available. Clinicians oftentimes hyperventilate patients leading to increased risk of aspiration and barotrauma. The SMART BVM has been released incorporating a pressure-responsive valve limiting air flow if/when the operator is hyperventilating. The aim of this study was to compare mean ventilation rates, singular tidal volume and one-minute volume of asynchronous ventilations between the SMART BVM, the more traditionally used Adult BVM, and the Paediatric BVM during an out-of-hospital cardiopulmonary resuscitation simulation amongst a group of novice paramedicine students.
Methods: Thirty paramedic students, working in pairs, completed three simulated cardiopulmonary resuscitation exercises (SIMEXS) utilising the three BVM’s (randomised order of exposure) lasting four-minutes each with one participant providing two-minutes of asynchronous ventilations and the second participant providing chest compressions at a rate of 100–120 per minute for two-minutes before defibrillating. Measures of ventilation rates, singular tidal volume and one-minute volume were taken for comparison against international recommendations.
Results: The SMART and Adult BVM mean ventilation rates were within recommended guideline parameters (i.e., 10–12 BPM). Adult BVM mean singular tidal volume (524mLs) and one-minute volume (5894mLs) were not dissimilar to the International Liaison Committee on Resuscitation (ILCOR) recommendations (i.e., 500mLs per inspiration and 5000–6000 mLs minute volume). However, mean tidal volumes for the SMART BVM and Paediatric BVM were below ILCOR recommendations (443mLs and 280mLs, respectively), as was the Paediatric BVM mean one-minute volume (2992mLs).
Conclusion: In a simulated out-of-hospital cardiac resuscitation, novice students were able to meet ILCOR recommendations for tidal and one-minute volume using a standard Adult BVM; however, they were unable to meet guidelines when using the Paediatric and SMART BVM.
Article Details
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Publishing in IJOP allows authors to keep their copyright while giving IJOP unrestricted copyright permissions. Articles published in IJOP use Creative Common Attribution 4.0 International (CC BY-ND 4.0) licensing. This license requires that re-users give credit to the creator. It allows re-users to copy and distribute the material in any medium or format in unadapted form only, even for commercial purposes. Additional terms apply and can be accessed here.
Publishing in IJOP also allows authors to have contracts for non-exclusive distribution of the Journal's published version of the article, such as posting to an institutional repository or publication in a book, on the condition that the original publication in the original layout format in IJOP is retained and acknowledged.
We permit and encourage authors to post the articles they published in IJOP on their affiliated websites. This helps share the information, encourages citation in other works, and promotes scholarly discourse in the spirit of open access.
References
Abella, B. S., Alvarado, J. P., Myklebust, H., Edelson, D. P., Barry, A., O'Hearn, N., Vanden Hoek, T. L., & Becker, L. B. (2005). Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA, 293(3), 305-310. https://doi.org/10.1001/jama.293.3.305
Ambu. (2021). SPUR II datasheet Resuscitators. https://www.ambuaustralia.com.au/emergency-care-and-training/resuscitators/product/ambu-spur-ii
Ambu. (2022). Instructions for use ambu SPUR II disposable. https://www.ambuaustralia.com.au/Admin/Public/Download.aspx?file=Files%2FFiles%2FDownloads%2FAmbu+AUS%2FAirwayManagement%2FResuscitator%2FSPUR+II+-+Disposable+Resuscitator%2FInstructions+for+use%2F492230097-IFU-SPUR-II_EN_Firtree-end-connector_V01_202309_TCC-11509_Online.pdf
Ambu. (2023). Ambu´s role in the history of resuscitation. Ambu. https://web.archive.org/web/20110428183328/http://www.ambu.co.uk/UK/About_Ambu_Ltd/Ambu%C2%B4s_History/Ambu%C2%B4s_Role_in_the_History_of_Resuscitation.aspx
Aufderheide, T. P., & Lurie, K. G. (2004). Death by hyperventilation: a common and life-threatening problem during cardiopulmonary resuscitation. Crit Care Med, 32(9 Suppl), S345-351. https://doi.org/10.1097/01.ccm.0000134335.46859.09
Aufderheide, T. P., Sigurdsson, G., Pirrallo, R. G., Yannopoulos, D., McKnite, S., von Briesen, C., Sparks, C. W., Conrad, C. J., Provo, T. A., & Lurie, K. G. (2004). Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation, 109(16), 1960-1965. https://doi.org/10.1161/01.CIR.0000126594.79136.61
Australia, S. J. A. (2020). Clinical Skills Manual for Ambulance Care in Western Australia. 25.
Australia., S. J. A. (2020a). Clinical practice guidelines for ambulance care in Western Australia (S. J. A. Australia, Ed. 35.2 ed., Vol. 2020) https://clinical.stjohnwa.com.au/clinical-practice-guidelines
Australia., S. J. A. (2020b). Clinical skills manual for ambulance care in Western Australia (S. J. A. Australia, Ed. Vol. 2020) https://clinical.stjohnwa.com.au/clinical-practice-guidelines
Australian Resuscitation Council. (2021). ANZCOR guideline, 8, Cardiopulmonary Resuscitation (CPR). https://www.resus.org.nz/assets/Resources/ANZCOR-Guideline-8-CPR-April-2021.pdf
Baskett, P. J., Nolan, J. P., Handley, A., Soar, J., Biarent, D., Richmond, S., & European Resuscitation, C. (2005). European Resuscitation Council guidelines for resuscitation 2005. Section 9. Principles of training in resuscitation. Resuscitation, 67 (Suppl. 1), S181-189. https://doi.org/10.1016/j.resuscitation.2005.10.006
Baskett, P. J. F., Bossaert, L., Carli, P., Chamberlain, D., Dick, W., Nolan, J. P., Parr, M. J. A., Scheidegger, D., & Zideman, D. (1996). Guidelines for the basic management of the airway and ventilation during resuscitation. A statement by the Airway and Ventilation Management Working Group of the European Resuscitation Council. Resuscitation, 31(3), 187-200. https://doi.org/10.1016/0300-9572(96)00975-6
Bucher, J., T., Vashisht, R., Ladd, M., & Cooper, J., S. (2019). Bag-Mask-Ventilation (N. C. f. B. Information, Ed. Vol. 2019). StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK441924/
Busko, J. M., Dailey, M., & Goodwin, F. (2009). Comparison of ventilatory efficacy of the Standard Bag–Valve–Mask and the SMART bag. Prehospital Emergency Care, 8(1), 88. https://doi.org/10.1080/312703003095
Charlton, K., McClelland, G., Millican, K., Haworth, D., Aitken-Fell, P., & Norton, M. (2021). The impact of introducing real time feedback on ventilation rate and tidal volume by ambulance clinicians in the North East in cardiac arrest simulations. Resusc Plus, 6, 100130. https://doi.org/10.1016/j.resplu.2021.100130
Culbreth, R. E., & Gardenhire, D. S. (2021). Manual bag valve mask ventilation performance among respiratory therapists. Heart Lung, 50(3), 471-475. https://doi.org/10.1016/j.hrtlng.2020.10.012
Dafilou, B., Schwester, D., Ruhl, N., & Marques-Baptista, A. (2020). It's in the bag: tidal volumes in adult and pediatric bag valve masks. The Western Journal of Emergency Medicine, 21(3), 722-726. https://doi.org/10.5811/westjem.2020.3.45788
Doerges, V., Sauer, C., Ocker, H., Wenzel, V., & Schmucker, P. (1999). Smaller tidal volumes during cardiopulmonary resuscitation: comparison of adult and paediatric self-inflatable bags with three different ventilatory devices. Resuscitation, 43(1), 31-37. https://doi.org/10.1016/s0300-9572(99)00117-3
Hess, D., & Spahr, C. (1990). An evaluation of volumes delivered by selected adult disposable resuscitators: the effects of hand size, number of hands used, and use of disposable medical gloves. Respiratory Care, 35(8), 800-805. https://www.ncbi.nlm.nih.gov/pubmed/10145317
Kroll, M., Das, J., & Siegler, J. (2019). Can Altering Grip Technique and Bag Size Optimize Volume Delivered with Bag-Valve-Mask by Emergency Medical Service Providers? Prehosp Emerg Care, 23(2), 210-214. https://doi.org/10.1080/10903127.2018.1489020
Lee, H. M., Cho, K. H., Choi, Y. H., Yoon, S. Y., & Choi, Y. H. (2008). Can you deliver accurate tidal volume by manual resuscitator? Emerg Med J, 25(10), 632-634. https://doi.org/10.1136/emj.2007.053678
McCabe, S., Smeltzer, SC.,. (1993). Comparison of tidal volumes obtained by onehanded and two-handed ventilation techniques. Am J Crit Care, 6, 467-473.
Meaney, P. A., Bobrow, B. J., Mancini, M. E., Christenson, J., de Caen, A. R., Bhanji, F., Abella, B. S., Kleinman, M. E., Edelson, D. P., Berg, R. A., Aufderheide, T. P., Menon, V., Leary, M., Cpr Quality Summit Investigators, t. A. H. A. E. C. C. C., the Council on Cardiopulmonary, C. C. P., & Resuscitation. (2013). Cardiopulmonary resuscitation quality: [corrected] improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. Circulation, 128(4), 417-435. https://doi.org/10.1161/CIR.0b013e31829d8654
Monsieurs, K. G., Nolan, J. P., Bossaert, L. L., Greif, R., Maconochie, I. K., Nikolaou, N. I., Perkins, G. D., Soar, J., Truhlar, A., Wyllie, J., & Zideman, D. A. (2015). European Resuscitation Council Guidelines for Resuscitation 2015: Section 1. Executive summary. Resuscitation, 95, 1-80. https://doi.org/10.1016/j.resuscitation.2015.07.038
Nishiyama, C., Kiguchi, T., Okubo, M., Alihodzic, H., Al-Araji, R., Baldi, E., Beganton, F., Booth, S., Bray, J., Christensen, E., Cresta, R., Finn, J., Grasner, J. T., Jouven, X., Kern, K. B., Maconochie, I., Masterson, S., McNally, B., Nolan, J. P., . . . Iwami, T. (2023). Three-year trends in out-of-hospital cardiac arrest across the world: Second report from the International Liaison Committee on Resuscitation (ILCOR). Resuscitation, 186, Article 109757. https://doi.org/10.1016/j.resuscitation.2023.109757
Nitzsky, A. J., Yacovone, M., & Kerns, L. (2018). Hand size and grip strength effects on volume delivery with two bag valve mask devices. Respiratory Care Journal, 63, Article 3025272. https://rc.rcjournal.com/content/63/Suppl_10/3025272
Nitzsky, A. J., Yacovone, M., & Kerns, L. (2018). Respiratory Care Journal. https://rc.rcjournal.com/content/63/Suppl_10/3025272
O-Two Medical Technologies. (2000). SMART Bag improving ventilations, one breath at a time. https://otwo.com/smart-bag-mo/
O-Two Medical Technologies. (2015). SMART Bag user manual. https://otwo.com/wp-content/uploads/2023/10/SMARTBAG-MO-IFU-REV24-JUL-2023.pdf
O-Two Medical Technologies. (2021). Controlled ventilations: are you and your BVM up to the task? https://otwo.com/wp-content/uploads/Controlled-Ventilation-Are-you-and-your-bag-up-to-the-task.pdf
Olasveengen, T. M., de Caen, A. R., Mancini, M. E., Maconochie, I. K., Aickin, R., Atkins, D. L., Berg, R. A., Bingham, R. M., Brooks, S. C., Castren, M., Chung, S. P., Considine, J., Couto, T. B., Escalante, R., Gazmuri, R. J., Guerguerian, A. M., Hatanaka, T., Koster, R. W., Kudenchuk, P. J., . . . Collaborators, I. (2017). 2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary. Resuscitation, 121, 201-214. https://doi.org/10.1016/j.resuscitation.2017.10.021
Sall, F. S., De Luca, A., Pazart, L., Pugin, A., Capellier, G., & Khoury, A. (2018). To intubate or not: ventilation is the question. A manikin-based observational study. BMJ Open Respir Res, 5(1), e000261. https://doi.org/10.1136/bmjresp-2017-000261
Siegler, J., Kroll, M., Wojcik, S., & Moy, H. P. (2017). Can EMS Providers Provide Appropriate Tidal Volumes in a Simulated Adult-sized Patient with a Pediatric-sized Bag-Valve-Mask? Prehosp Emerg Care, 21(1), 74-78. https://doi.org/10.1080/10903127.2016.1227003
Soar, J., Berg, K. M., Andersen, L. W., Bottiger, B. W., Cacciola, S., Callaway, C. W., Couper, K., Cronberg, T., D'Arrigo, S., Deakin, C. D., Donnino, M. W., Drennan, I. R., Granfeldt, A., Hoedemaekers, C. W. E., Holmberg, M. J., Hsu, C. H., Kamps, M., Musiol, S., Nation, K. J., . . . Adult Advanced Life Support, C. (2020). Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation, 156, A80-A119. https://doi.org/10.1016/j.resuscitation.2020.09.012
Soar, J., Bottiger, B. W., Carli, P., Couper, K., Deakin, C. D., Djarv, T., Lott, C., Olasveengen, T., Paal, P., Pellis, T., Perkins, G. D., Sandroni, C., & Nolan, J. P. (2021). European Resuscitation Council Guidelines 2021: Adult advanced life support. Resuscitation, 161, 115-151. https://doi.org/10.1016/j.resuscitation.2021.02.010
The, L. (2018). Out-of-hospital cardiac arrest: a unique medical emergency. Lancet, 391(10124), 911. https://doi.org/10.1016/S0140-6736(18)30552-X
Vissers, G., Duchatelet, C., Huybrechts, S. A., Wouters, K., Hachimi-Idrissi, S., & Monsieurs, K. G. (2019). The effect of ventilation rate on outcome in adults receiving cardiopulmonary resuscitation. Resuscitation, 138, 243-249. https://doi.org/10.1016/j.resuscitation.2019.03.037
Wagner-Berger, H. G., Wenzel, V., Stallinger, A., Voelckel, W. G., Rheinberger, K., Stadlbauer, K. H., Augenstein, S., Dorges, V., Lindner, K. H., & Hormann, C. (2003). Decreasing peak flow rate with a new bag-valve-mask device: effects on respiratory mechanics, and gas distribution in a bench model of an unprotected airway. Resuscitation, 57(2), 193-199. https://doi.org/10.1016/s0300-9572(03)00032-7
Wagner-Berger, H. G., Wenzel, V., Voelckel, W. G., Rheinberger, K., Stadlbauer, K. H., Muller, T., Augenstein, S., von Goedecke, A., Lindner, K. H., & Keller, C. (2003). A pilot study to evaluate the SMART BAG: a new pressure-responsive, gas-flow limiting bag-valve-mask device. Anesthesia and Analgesia, 97(6), 1686-1689. https://doi.org/10.1213/01.ANE.0000087064.29929.CE
Wang, H. E., Jaureguibeitia, X., Aramendi, E., Nassal, M., Panchal, A., Alonso, E., Nichol, G., Aufderheide, T., Daya, M. R., Carlson, J., & Idris, A. (2023). Methods for calculating ventilation rates during resuscitation from out-of-hospital cardiac arrest. Resuscitation, 184, 109679. https://doi.org/10.1016/j.resuscitation.2022.109679
Wenzel, V., Idris, A. H., Dorges, V., Nolan, J. P., Parr, M. J., Gabrielli, A., Stallinger, A., Lindner, K. H., & Baskett, P. J. (2001). The respiratory system during resuscitation: a review of the history, risk of infection during assisted ventilation, respiratory mechanics, and ventilation strategies for patients with an unprotected airway. Resuscitation, 49(2), 123-134. https://doi.org/10.1016/s0300-9572(00)00349-x
Wenzel, V., Keller, C., Idris, A. H., Dorges, V., Lindner, K. H., & Brimacombe, J. R. (1999). Effects of smaller tidal volumes during basic life support ventilation in patients with respiratory arrest: good ventilation, less risk? Resuscitation, 43(1), 25-29. https://doi.org/10.1016/s0300-9572(99)00118-5
ZOLL Medical. (2015). ZOLL X Series spec sheet. https://www.zoll.com/-/media/uploadedfiles/public_site/products/x_series/9656_0235_xseries_spec_us-pdf.ashx